
Boolean logic 
When designing programs, there are often points where a condition needs to be tested 

in order to make a decision. Conditions are formed using Boolean logic. 

What is Boolean logic? 

Programs use simple comparisons to help make decisions. Boolean logic is a form of 
algebra where all values are either True or False. These values of true and false are 
used to test the conditions that selection and iteration are based around. 

 

Boolean logic uses algebra and algebraic expressions. We use these expressions in 
algorithms and programs. 

Expression Boolean equivalent 

Equals = 

Greater than > 

Less than < 

Greater than or equal to >= 

Less than or equal to <= 

Does not equal <> 

And AND 

Or OR 



Expression Boolean equivalent 

Not NOT 

Most programming languages use these equivalent Boolean expressions. However, 
some, such as Python, have slightly different equivalents: 

Expression Boolean equivalent In Python 

Equal to = == 

Does not equal <> != 

And AND and 

Or OR or 

Not NOT not 

 

Boolean expressions are represented using algebra. 

Consider these statements: 

 5 < 10 

 x < 10 

 x < y 

Each of these statements is a Boolean expression in the form of algebra. The only 
difference between them is that the first expression uses numbers and the second and 
third use variables. If we give x the value 5 and y the value 10, then each statement is 
identical. 

Each statement is also a comparison. The statements compare the first value with 
the second. In this case we are saying that 5 is less than 10. 

Boolean values 

In Boolean logic, each statement is a comparison, and each comparison gives a 
Boolean value – True or False. 

When x = 5 and y = 10 then: 



Statement Expression Boolean value 

y > x y is greater than x True. When x is 5 and y is 10, then y is greater than x. 

x < y x is less than y True. When x is 5 and y is 10, then x is less than y. 

x = y x equals y False. When x is 5 and y is 10, then x does not equal y. 

x<>y x does not equal y True. When x is 5 and y is 10, then x does not equal y. 

When x = 5 and y = 5, we get a different set of Boolean values: 

Statement Expression Boolean value 

y > x y is greater than x 
False. When x is 5 and y is 5, then y is not greater than 
x. 

x < y x is less than y False. When x is 5 and y is 5, then x is not less than y. 

x = y x equals y True. When x is 5 and y is 5, then x is equal to y. 

x<>y 
x does not equal 
y 

False. When x is 5 and y is 5, then x is equal to y. 

Each Boolean expression gives a result that we can use in selection and iteration. 

Using Boolean logic in programming 

Boolean logic is used in selection to test conditions. 

Consider this simple Python (3.x) program that prints out a different message depending 
on how old you are: 

age = int(input("How old are you?")) if age >= 70: print("You are aged to perfection!") 

else: print("You are a spring chicken!") 

This program uses selection to determine whether to print one message or the other: 

 The program examines the condition of the Boolean expression in line 2. 

 If the inputted age is greater than or equal to 70, then the condition is True. As a 
result the program prints “You are aged to perfection!” 

 If the inputted age is less than 70, then the condition is False. As a result, the program 
prints “You are a spring chicken!” 

 

Building up complex decisions with Boolean expressions 



The following Python (3.x) program works as above but has the added feature of 
checking to see if the inputted age is 50: 

age = int(input("How old are you?")) if age >= 70: print("You are aged to perfection!") elif 

age == 50: print("Wow, you are half a century old!") else: print("You are a spring 

chicken!") 

As well as checking the condition of the Boolean expression in line 2, this program also 
checks the condition of the Boolean expression in line 4: 

 The program examines the condition of the Boolean expression in line 2. 

 If the age that is input is greater than or equal to 70, then the condition is True. As a 
result the program prints “You are aged to perfection!” 

 If the age that is input is less than 70, then the condition is False. The program then 
examines the condition of the expression in line 4. 

 If the age that is input is equal to 50, then the first condition (age >= 70) is False, but 
the second condition (age == 50) is True. As a result the program prints “Wow, you 
are half a century old!”) 

 If the age that is input is not greater than or equal to 70 and not equal to 50, then both 
expressions are False. As a result the program prints “You are a spring chicken!” 

Boolean logic does not just work with numbers. Boolean expressions can also compare 
text, for example to check if a password is correct. 

Consider this Python (3.x) program, which repeats if a password has been entered 
incorrectly: 

answer = "" while answer != "ilovecomputing": answer = input("Type in the password: ") 

print("Password correct”) 

This program uses selection to determine whether to repeat, but this time compares text, 
not numbers. 

 The program examines the condition of the Boolean expression in line 2. It is looking 
to see if the value of ‘answer’ does not equal “ilovecomputing” 

 If the value of ‘answer’ does not equal “ilovecomputing”, then the condition is True. As 
a result the program asks the user to input the password and repeats the comparison. 

 If the value of ‘answer’ equals “ilovecomputing” then the condition is False. As a 
result, the program skips the loop and proceeds to the last line of the program, which 
prints “Password correct”. 

 


